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Abstract

Thermal end effects on electroosmotic flow in a capillary are numerically investigated in this paper. The model

accounts for the dynamic coupling effects of Joule heating on the temperature field, the electrical double layer field, the

applied electric potential field and the flow field in the full capillary from reservoir to reservoir. These fields are strongly

coupled via temperature dependent liquid properties. We find the electric field intensity is non-uniform due to reservoir-

based thermal end effects. The resulting cross-stream velocity profile is concave near the inlet and outlet regions, and

convex through the central portion of the capillary. These deviations from ideal electroosmotic flow are induced by

axial temperature gradients. The calculated liquid temperature lies between the values predicted by previous ‘‘solid’’

solution models with constant and the models with variable electric conductivities, and is in qualitative agreement with

experimental observations. The influence of various working parameters (including applied electric field, ionic con-

centration, zeta potential) and also the capillary size (including diameter and length) is investigated.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Electroosmosis describes the motion of bulk liquid

with respect to a charged solid surface in response to an

electric field applied parallel to the surface [1]. Electro-

osmotic flow offers many advantages over the more

conventional pressure-driven flow; in that no moving

parts are required, the plug-like velocity profile reduces

dispersion of discrete samples, and it is well suited to

miniaturization. The advent of microfabricated fluidic

devices has seen many applications of electroosmotic

flow. It has been extensively used to ‘‘pump’’ the solu-

tion through either a capillary [2] or a channel mi-

cromachined in a chip [3] during electrophoresis. It is

also a method of controlling the sample injections in

microchips [4,5]. However, there exists an inevitable

Joule heating effect accompanying the electroosmotic

flow, especially significant when high voltages are ap-

plied. This effect produces temperature gradients in both
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cross-stream and axial directions in the channel, of

which the former has been extensively studied and long

understood to cause the band spreading of charged

analytes and thus a reduction in the separation efficiency

[6–9]. In addition, elevated solution temperatures can

lead to denaturation of proteins or nucleic acids [10].

The use of glass microfluidic chips greatly mitigates

Joule heating effects through rapid heat conduction and

thermal inertia. However, increasingly popular polymer-

based (e.g., PDMS) chips, which can have a very low

thermal conductivity, can suffer from Joule heating ef-

fects significantly. Therefore, it remains important to

control the liquid temperature in microfluidic systems.

A variety of experimental techniques have been

developed to measure the liquid temperature inside mi-

crofluidic systems, like backscatter interferometry [11],

nuclear magnetic resonance (NMR) [12], Raman spec-

troscopy [13], and temperature sensitive probes (e.g.,

thermochromic liquid crystal [14], phosphorescent [15]

or fluorescent dye [16,17] etc.). Using caged-dye based

flow visualization, Sinton and Li [18] found a slight

curvature in the electroosmotic velocity profiles ob-

tained at the capillary middle point. Although the

presence of the curvature was shown to correlate with
ed.
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Nomenclature

C molar concentration (mol l�1)

Cp specific heat

e electron charge, 1.602 · 10�19 C

E applied electric field

h heat transfer coefficient

k thermal conductivity

KB Boltzmann’s constant, 1.381· 10�23 JK�1

n0 bulk ionic concentration (m�3)

Na Avogadro’s number, 6.022· 1023 mol�1

p hydrodynamic pressure

P non-dimensional pressure

Pe Peclet number

R capillary radius

t Time

T absolute temperature

T1 ambient temperature, 298 K

v velocity vector

V non-dimensional velocity vector

zv valence of ions

Greek symbols

r electric conductivity

e dielectric constant

e0 permittivity of the vacuum, 8.854· 10�12

CV�1 m�1

j Debye–Huckel parameter (m�1)

k molar conductivity

l dynamic viscosity

/ external potential field

U non-dimensional electric field

w internal potential field

q mass density (kgm�3)

qe electric charge density (Cm�3)

s non-dimensional time

H non-dimensional temperature

f zeta potential

Subscripts

p parameters associated with polyimide coat-

ing

ref reference parameters

w parameters associated with capillary wall

3146 X. Xuan et al. / International Journal of Heat and Mass Transfer 47 (2004) 3145–3157
expected Joule heating effects, the exact mechanism

was not determined. Also, quite a few researchers have

carried out theoretical analyses to calculate the liquid

temperature. Grushka et al. [6] and Knox [8] assumed a

constant electric conductivity of the solution, and ob-

tained a radially parabolic temperature profile. Gobbie

and Ivory [19] and Bello and Righetti [20] pointed out

that assuming a constant electric conductivity resulted in

underestimated liquid temperatures because in reality,

conductivity increases with temperature. In these previ-

ous analyses, the solution was viewed as a ‘‘solid’’ con-

ductor and the advective effects of electroosmotic flow

were neglected, as were the thermal end effects due to the

presence of reservoirs. Moreover, they did not consider

the dynamic change of electric field intensity when the

electric conductance of solutions varied with tempera-

ture. We will show in this work that the real liquid

temperature is an intermediate value between the two

temperatures predicted by the ‘‘solid’’ solution models

with and without accounting for the temperature

dependence of electric conductivity.

The flow field, electric potential field and temperature

field are strongly coupled if the temperature dependence

of electric conductivity is taken into consideration.

Computer aided numerical simulation is the only option

to solve this problem. A number of simulations have

been conducted on these coupled fields. Zhao and Liao

[21] analyzed the thermal effects on electroosmotic
pumping of liquids in a slit channel, but they assumed a

constant electric field and imposed isothermal condi-

tions on the channel plates. Erickson and Li [22] simu-

lated the transient thermal behavior of an entire

microchannel reactor, although they did not consider

the temperature dependence of liquid properties.

Moreover, the temperature gradient inside the reactor

was not due to the Joule heating inside the solution but

the solid electric heaters outside the microchannel. Tang

et al. [23] investigated the Joule heating effect on the

steady state electroosmotic flow in an uncoated capil-

lary, and obtained a significant radial temperature dif-

ference under high electric fields (e.g., over 10� in the

capillary with a 100-lm internal diameter under a 50-

kVm�1 electric field). However, they also assumed a

uniform electric field. In this work, we will develop a

finite element based numerical model to investigate the

dynamic effect of Joule heating on the temperature,

potential and flow fields during capillary electroosmosis.

Variations of material properties with respect to tem-

perature are taken into consideration. In this way, the

temperature field, the electrical double layer field, the

applied electrical field and the flow field are coupled

together. In addition, we will consider a capillary with a

finite length and hence consider the thermal end effects.

Our goal is to present a comprehensive analysis of the

effect of Joule heating on the dynamic electroosmotic

flow in a whole capillary system.



X. Xuan et al. / International Journal of Heat and Mass Transfer 47 (2004) 3145–3157 3147
2. Mathematical model

Fig. 1 shows the capillary system to be modeled in

this work, a capillary joining two reservoirs. The liquid

in the reservoirs is assumed to be at the ambient tem-

perature, T1. Although both reservoirs, particularly the

downstream reservoir, receive heat from the liquid

flowing in the capillary, this heat contribution is negli-

gible for reservoir volumes on the order of microlitres.

The capillary is composed of three components: liquid

domain with a radius R, fused silica wall with a radius

Rw and polyimide coating with a radius Rp. The axial

length of the capillary is L. In cylindrical coordinates, it

reduces to a 2-D problem if the gravity effect (buoyancy

induced natural convection) is neglected.

2.1. Governing equations

As has been well discussed in the literature [24–26],

electroosmotic flow is governed by the continuity

equation

r � v ¼ 0 ð1Þ

and the momentum equations subjected to an electrical

body force

q
ov

ot

�
þ ðv � rÞv

�
¼ �rp þr � ½lðT Þrv
 þ qeE; ð2Þ

where v is the velocity vector, t the time, q the density of

liquid assumed to be incompressible, p the hydrody-

namic pressure, lðT Þ the temperature dependent vis-

cosity with T the absolute temperature, qe the electric

charge density, and E the externally applied electric field.

The electric charge density is related to the internal

potential field w of the electric double layer (EDL),
r
Rp

Rw

R Liquid

Wall

Reservoir 1, T = T∞

Electrode

r

Fig. 1. The capillary system to be model
formed by the charge at the capillary internal wall or the

so-called zeta potential f, by the Poisson equation [1]

r � eðT Þ
eref

rw

� �
¼ � qe

e0eref
; ð3Þ

where eðT Þ is the temperature dependent dielectric con-

stant, eref the reference dielectric constant, and e0 the

permittivity of the vacuum. For a symmetric electrolyte

solution, say KCl, w is determined by the Poisson–

Boltzmann equation

r � eðT Þ
eref

rw

� �
¼ j2 sinh

zvew
KBT

� �
; ð4Þ

j ¼ 2n0z2ve
2

erefe0KBT

� �1=2

; ð5Þ

where j�1 is the characteristic thickness of the EDL with

n0 the bulk ionic concentration, zv the valence, e the

electron charge and KB the Boltzmann’s constant,

respectively.

The electric field E is calculated from the externally

applied electric potential / by

E ¼ �r/: ð6Þ

Since the capillary wall is non-conducting, the conser-

vation of electric current gives

r � ½rðT Þr/
 ¼ 0; ð7Þ

where rðT Þ ¼ kðT ÞC is the temperature dependent elec-

tric conductivity with C the molar concentration and

kðT Þ the molar conductivity of the solution, respectively.

The molar concentration is dependent on the bulk ionic

concentration n0 in Eq. (5) by n0 ¼ NaC with Na the

Avogadro’s number.
L
z

Polyimide coating

Reservoir 2, T = T∞

Electrode

z

ed and the computational domain.
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While the flow field in Eq. (2), EDL potential field in

Eq. (4), and applied electric potential field in Eq. (7) are

all restricted in the liquid region, the temperature field

must be extended to cover the whole computational

domain (see Fig. 1). Within the liquid region, the energy

equation in the presence of electroosmotic flow effect is

given by

qCp
oT
ot

�
þ v � rT

�
¼ r � ½kðT ÞrT 
 þ rðT ÞE � E; ð8Þ

where Cp is the specific heat of the liquid and is assumed

to be constant in this work, kðT Þ the temperature

dependent thermal conductivity. Here, we have ne-

glected the term associated with viscous dissipation (i.e.,

the thermal energy converted from the mechanical en-

ergy) because it is small compared to the Joule heat.

Within the two solid regions, the energy equations be-

come

qwCpw
oT
ot

¼ r � ½kwðT ÞrT 
; ð9Þ

qpCpp
oT
ot

¼ r � ½kpðT ÞrT 
; ð10Þ

where the subscripts ‘‘w’’ and ‘‘p’’ denote the capillary

wall and polyimide coating, respectively.
2.2. Modeling simplifications

It is rather difficult to solve the set of Eqs. (2), (4) and

(7)–(10) without simplifications. The main problem lies

in the simultaneous presence of three separate length

scales: the capillary length of millimeters, the capillary

radius of micrometers and the EDL thickness of na-

nometers. A complete solution on all the three length

scales would require a prohibitive amount of memory

and computational time. Therefore, two methods have

been proposed to solve this problem. One is to artifi-

cially increase the order of magnitude of the EDL

thickness, and a qualitative nature of the flow field can

thus be obtained [24,25]. The other way is to apply a slip

boundary condition at the wall, and avoid the solution

of the EDL field (i.e., Eq. (4)) [26,27]. In this work, the

second approach is chosen, where the liquid at the

capillary internal wall is assumed to slip at a velocity

Vwall ¼ leoEz with leo ¼ �eðT Þe0fðT Þ=lðT Þ the electro-

osmotic mobility and Ez the local electric field in the

axial direction (the axial coordinate z is indicated in

Fig. 1).

Another simplification is made with respect to the

momentum equations. Since electroosmotic flows are

generally limited to small Reynolds numbers, the con-

vection term (i.e., the second term on the left hand side)

in Eq. (2) can be neglected [22,27]. In addition, it has

been shown that the characteristic time tsteady for an

electroosmotic flow to reach the steady state is on the
order of milliseconds [24,26], which is far less than the

characteristic time of thermal diffusion in this system (on

the order of seconds) [28]. Hence, we can reasonably

omit the transient term in the momentum equations as

long as the time step sizes selected in the numerical

simulation are greater than tsteady [26].

Finally, the set of non-dimensional equations deter-

mining the applied electric potential field, flow field, and

temperature field is summarized as

r � rðHÞ
rref

rU

� �
¼ 0

r � V ¼ 0

0 ¼ �rP þr � lðHÞ
lref

rV

� �

oH
os

þ PeV � rH ¼ r � kðHÞ
kref

rH

� �
þ rðHÞ

rref

rU � rU

qiCpi

qCp

oH
os

¼ r � kiðHÞ
kref

rH

� �

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

;

ð11Þ
where the length is scaled by the capillary internal

diameter (i.e., 2R in Fig. 1), U ¼ /=u with u the po-

tential applied at the capillary inlet, V ¼ v=Vref with the

reference velocity, Pe ¼ qCpRVref=kref the Peclet number,

Vref ¼ erefe0frefu=lrefL, P ¼ p=qV 2
ref , s ¼ tkref=qCpR2 and

H ¼ ðT � T1Þkref=u2rref . The subscript i may be ‘‘w’’ for

the capillary wall or ‘‘p’’ for the polyimide coating.

We now specify the boundary conditions for the

problem. For the applied electric field, we impose insu-

lation conditions along the edges of the liquid domain,

and non-dimensional values of 1 at the inlet and 0 at the

outlet of the capillary. For the flow field, we impose fully

developed velocity profiles at both ends of the capillary,

a symmetric condition along the axis, and a slip velocity

along the charged wall. For the temperature field, we

impose isothermal conditions at both ends of the capil-

lary, a symmetric condition along the axis, and a con-

vective boundary condition surrounding the capillary

given by

oH
or

�
þ h
kpðHÞH

�
r¼Rp

¼ 0; ð12Þ

where h is the convective heat transfer coefficient, and

the radial coordinate r is indicated in Fig. 1.

2.3. Numerical method

The equations in (11) were solved through the finite

element method using an in-house written code. We

employ 6-noded quadratic triangle elements for the

electric potential, velocity and temperature, and 3-noded

linear triangle elements for the pressure. A non-uniform

grid is generated with grid refinement along the axial

direction in the regions near the capillary inlet and

outlet, where field variables were found to vary most
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strongly. At each time step, we use properties evaluated

with the current temperature field (initially at room

temperature), to determine in turn the potential field,

wall slip velocity and flow field. Next, known values of

potential and velocity fields are used to solve for the new

temperature field at the current time step. These steps

are repeated until the temperature variation between

adjacent time steps is less than a tolerance (i.e., attain a

steady state) or a prescribed time is exceeded for those

cases where steady state is inaccessible (i.e., a thermal

runaway [19,20]).

To verify the code, we consider two test cases for

which analytical solutions are available: One is the

homogeneous electroosmotic flow in a cylindrical cap-

illary considered by Rice and Whitehead [29], and the

other is the 1-D heat conduction across a cylindrical

capillary considered by Gobbie and Ivory [19]. Our re-

sults are in good agreement with these analytical for-

mulae.
3. Results and discussion

We assume that the liquid has similar physical

properties as water, and all the material properties used

in the simulation are summarized in Table 1. The

dimensions and properties of the flexible fused silica

capillary tubes used in this work are provided by Poly-

micro Technologies, USA [30]. The outer diameter of

the capillary is 360 lm with a 20-lm thick polyimide

coating (i.e., Rw ¼ 160 lm and Rp ¼ 180 lm). The cap-

illary internal radius, R, was a parameter in the simu-

lation.

3.1. General features

3.1.1. Temperature field

Fig. 2 shows the transient development of the tem-

perature field. We see that as time goes on, the tem-

perature of the whole capillary is elevated (Fig. 2a). But,

temperature gradients are mainly in the inlet and outlet

regions. The inlet region is gradually expanded while the

outlet region is shortened. These dynamic changes are
Table 1

Material properties used in the simulation

Liquid

Density, q � 103 (kgm�3) 1.00�

Heat capacity, Cp � 103 (J kg�1 K�1) 4.18�

Thermal conductivity, k (Wm�1 K�1) 0:61þ 0:0012ðT �
Molar conductivity, k � 10�3 (m2 Smol�1) 12:64½1þ 0:025ðT
Dynamic viscosity, l (kgm�1 s�1) 2:761 expð1713=T
Dielectric constant, � 305:7 expð�T=21

T1 is chosen as 298 K in this work.

The properties with the superscript * are obtained from Ref. [31], an
due to the advective effect of electroosmotic flow, which

continuously pulls the cold solution from the inlet res-

ervoir while pushes the hot solution into the outlet res-

ervoir. The temperature difference between the capillary

core and the ambient is very small (Fig. 2b). It is

attributed to the high Biot number of the whole system.

The radial temperature gradient, however, might be

significant due to the essentially small capillary radius.

We will discuss the effects of radial and axial tempera-

ture gradients in the next section.

3.1.2. External potential field

Fig. 3 shows the transient development of the axial

electric field Ez, which has been scaled by u=L (i.e., the

nominal electric field applied to the capillary, Enom).

Initially, Ez is uniform because the liquid temperature is

uniform. When temperature gradients arise in the inlet

and outlet regions, the axial electric field is altered. The

higher the temperature is, the larger the local electric

conductivity becomes, resulting in a lower local electric

field intensity. As shown in the figure, the electric field is

highly non-uniform near the entrance and exit of the

capillary. This non-uniformity is the main difference

between the current full model and the solid ‘‘solution’’

model we mentioned above, which will be further dis-

cussed in the next section.

3.1.3. Flow field

Fig. 4 shows the transient development of the elec-

troosmotic velocity. The electroosmotic velocity is

gradually increased over time as the temperature rises

(Fig. 4a). Another important finding is the convex

velocity profile at the middle of the capillary (Fig. 4b),

resulting from the velocity difference between the elec-

troosmotic wall velocity and the bulk liquid motion.

This velocity profile shape is caused by an induced

pressure field. Because of the temperature difference

along the capillary, the electroosmotic flow velocity is

different along the capillary length direction as well.

Therefore, an induced pressure filed exists inside the

capillary along the flow direction to adjust the axial

flow velocity in order to satisfy the continuity equation

(i.e., the constant flow rate). Fig. 5 shows the sine-like
Capillary wall Coating

2.15� 1.42

1.00� 1.10

T1Þ� 1:38þ 0:0013ðT � T1Þ� 0.15

� T1Þ

Þ � 10�6

9Þ

d those without the superscript * are from Refs. [8] and [9].



295

300

305

310

315

320

325

330

335

0 2 4 6 8 10

Downstream distance (cm)

Te
m

pe
ra

tu
re

 (K
)

0s

10s

20s

40s

80s

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

250 260 270 280 290 300 310 320 330
Temperature (K)

N
on

-d
im

en
si

on
al

 ra
di

us

0s 10s 20s 40s 80s

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

327.25 327.3 327.35 327.4 327.45

Fluid

Wall

Coating(b)

Fig. 2. Transient development of temperature field: (a) along the axis, (b) at the middle of the capillary. The inset in (b) is the expanded

view of the temperature profile 80 s after the voltage is applied. Working parameters include internal radius R ¼ 50 lm, length L ¼ 10

cm, zeta potential f ¼ �50 mV, molar concentration C ¼ 10 mM, applied electric field 15 kVm�1 and heat transfer coefficient h ¼ 10

Wm�2 K�1.
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pressure field throughout the capillary. In both the inlet

and outlet regions, a positive pressure gradient (pres-

sure increases in the flow direction) is induced to de-

crease the bulk liquid velocity, while a negative

pressure gradient is induced through the rest channel to

increase the bulk liquid velocity. Fig. 6 shows the

velocity vector plot 80 s after the voltage is applied. We

can see a concave velocity profile at both ends of the

capillary (Fig. 6a and c), and a nearly flat velocity
profile (as we have discussed above, it is actually of

convex shape) through most portion of the channel

(Fig. 6b).

In summary, the Joule heating effect induces axial

temperature gradients in the regions near the capillary

inlet and outlet, which in turn change the local electric

field and thus the local electroosmotic velocity. These

end effects affect the velocity profile through the channel

by the conservation of mass requirement.
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3.2. Comparison with ‘‘solid’’ solution models

We also calculated the temperature field using the

‘‘solid’’ solution models with and without including the

temperature dependence of electric conductivity. Fig. 7

shows the comparison of temperature contours in the

whole domain 80 s after the voltage is applied. The

‘‘solid’’ solution models always give a symmetric tem-

perature profile due to the absence of advective flow

effects. With the present full model, the electroosmotic

flow pushes the high temperature plateau downstream in

the capillary. 1 Moreover, we see that the Joule heating

effect is significantly underestimated if the temperature

dependence of the electric conductivity is neglected.

When we use the ‘‘solid’’ solution model to consider this

temperature dependence, however, the Joule heating

effect is overestimated. Our results agree qualitatively

with the experimental observations from Gobbie and

Ivory [19], who also observed that the autothermal

model with temperature dependent electric conductivity

generally over-predicts the capillary temperature, while

the constant-conductivity model under-predicts it. We

compared the characteristic time required to reach the

steady state for the above three models, as shown in Fig.

8. For the case with constant electric conductivity, the

characteristic time is the shortest. Our full model pre-

dicts a moderate characteristic time.
1 Actually, as the time goes on, the length of the high

temperature plateau is gradually shortened, and can disappear

depending on the channel length and the extent of Joule heating

effect. We can see this trend in Fig. 2a.
3.3. Influence of working parameters

In this section, we investigate the effects of working

parameters and capillary size on the electroosmotic flow

using the full model. These effects are discussed indi-

vidually below, and shown relative to a general case in

Figs. 9 and 10. Fig. 9 shows the curves of centerline

liquid velocity against time, and Fig. 10 shows the cen-

terline temperature profiles at t ¼ 80 s. The liquid

velocity at the center of the capillary is normalized by

the nominal value of the applied electric field intensity,

Enom.

3.3.1. Capillary size

Here, we consider both the capillary internal diame-

ter and the length. As has been well known, decreasing

the capillary internal diameter leads to a less Joule

heating (see the rise of liquid velocity in case B com-

pared with case A in Fig. 9). Moreover, the time re-

quired to reach the steady state is shortened. We want to

point out, however, that the faster thermal relaxation is

not solely due to the more effective heat dissipation

associated with the smaller diameter. The reason is also

attributed to the reduction of total Joule heat inside the

capillary. This can be qualitatively explained as follows.

Let us consider a simple 1-D heat conduction, and as-

sume that the radial temperature difference can be ne-

glected, then the energy conservation inside a capillary

gives

2pRphðT � T0Þ ¼ pR2rðT ÞE2
nom; ð13Þ

where T can now be viewed as the average tempera-

ture of the liquid. Assuming a constant electric
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Fig. 4. Transient development of electroosmotic velocity: (a) axial distribution, solid lines with hollow symbols represent the bulk

liquid velocity along the axis and dashed lines with full symbols represent the slip velocity along the charged wall (not shown at t ¼ 0 s);

(b) cross-stream velocity profiles at the middle of the capillary. Working parameters are the same as those in Fig. 2.
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conductivity, 2 the temperature elevation, DT , of the

whole capillary is given by

DT ¼ rðEnomRÞ2

2Rph
; ð14Þ
2 We also can use the empirical formula for electric conduc-

tivity as given in Table 1 to find a more accurate estimation of

the whole-capillary temperature rise.
which tells us DT is proportional to the square of the

capillary internal radius R. Fig. 10 includes the cases

where the magnitude of EnomR holds while R is decreased

from 50 lm (case A) to 10 lm (case G). One can see that

the temperature differences between cases A and G are

relatively small.

The change in the advective flow effect is also note-

worthy. For the capillary with a smaller internal radius,

the axial temperature profile becomes more symmetric

(see case B in Fig. 10), even if the applied electric field is
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Fig. 6. Velocity vector plot 80 s after the voltage is applied: (a) inlet region; (b) middle region; (c) outlet region. All coordinates are in

non-dimensional forms scaled by the capillary internal diameter (100 lm, here). Working parameters are the same as those in Fig. 2.
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greatly increased (see case G in Fig. 10) which implies a

higher electroosmotic velocity. The two modes of axial

heat transport are, respectively, advection and diffusion.

As the capillary internal diameter is decreased, the dif-

fusion portion, which is symmetric cooling, is essentially

constant. The advection portion that leads to an asym-

metric axial temperature profile is, therefore, decreased

even at a higher liquid velocity.

For a longer capillary, the role of conductive cooling

due to the presence of reservoirs (end effects) is reduced,

and the role of convective cooling around the capillary is
increased, extending the time to reach the steady state

and resulting in higher liquid temperatures. This can be

seen from case C compared with case A in Fig. 9. It is

also found that the thermal end effects less alter the

electroosmotic velocity profile because the induced

pressure gradient is less significant in the central portion

of a longer capillary.

3.3.2. Applied electric field

From the energy equation (8), we know that the

Joule heat is related to the square of the electric field



Fig. 7. Temperature contours 80 s after the voltage is applied: (a) ‘‘solid’’ solution model with constant electric conductivity; (b)

‘‘solid’’ solution model with temperature dependent electric conductivity; (c) present full model. The temperature differences between

adjacent contour levels are all 2 K except those specially labeled. Working parameters are the same as those in Fig. 2.
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intensity. A reduced electric field produces less temper-

ature rise, and thus less increase in the bulk liquid

velocity and a shorter time to reach the state of thermal

equilibrium (see case D compared with case A in Fig. 9).

The advective flow effect is reduced as well (see case D in

Fig. 10).
3.3.3. Concentration

The molar concentration C determines the solution’s

electric conductivity by rðT Þ ¼ kðT ÞC. If the solution is

diluted, the electric conductivity is lowered while typi-

cally the zeta potential is slightly increased. As a result,

the normalized centerline velocity starts at a higher value
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than case A, and increases less (see case E in Fig. 9) as

time goes on. Due to the reduction in Joule heat gen-

eration, the flow effect is similar to the general case (see

case E in Fig. 10).

3.3.4. Convective heat transfer coefficient

Improving the capability of heat dissipation will

definitely diminish the effect of Joule heating and hence

thermal end effects. As shown in Fig. 9, the liquid attains

a low, steady state velocity very quickly when the heat

transfer coefficient h is increased from 10 Wm�2 K�1 in

the general case (case A) to 100 Wm�2 K�1 (case F).

Case A corresponds to the free air convection and case F

corresponds to the forced air convection. We also see

that the temperature field is nearly symmetric (see case F

in Fig. 10).
4. Conclusions

We have developed a numerical model to simulate

the electroosmotic flow in a full capillary where the Joule

heating effect and the thermal end effects are present.

The inclusion of temperature dependent liquid proper-

ties couples the flow field, the electric potential field and

the temperature field. We found that axial temperature

gradients result in a non-uniform electric field intensity

and thus non-ideal (concave/convex/concave) electroos-

motic velocity profiles. Except in the regions near the

capillary ends the cross-stream velocity profile is convex.

This convex velocity profile is not caused by radial

temperature gradients. It is due to the negative pressure

gradient induced by reservoir-based thermal end effects.

The convex curvature can be diminished by either

decreasing the Joule heating effect (e.g., lowering the

applied electric field, reducing the capillary internal

diameter or reducing the electric conductivity of the

solution) or increasing the capillary length. Our results

are in qualitative agreement with experimental obser-

vations, and showed that previous ‘‘solid’’ solution

models either underestimate or overestimate the liquid

temperatures.
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